Beam Power Tube

CERAMIC-METAL SEALS CONDUCTION COOLED

COAXIAL-ELECTRODE STRUCTURE UNIPOTENTIAL CATHODE

For Use in Low-Voltage Mobile Equipment at Frequencies up to 500 Mc

GENERAL DATA

GENERAL PAIN
Electrical:
Heater, for Unipotential Cathode: Voltage range (AC or DC) ^a 12.0 to 15.0 volts Current (Approx.) at 13.5 volts 1.3 amp Minimum heating time 60 sec Mu-Factor, Grid No.2 to Grid No.1 for plate volts = 250, grid-No.2
volts = 200, plate amperes = 1.2 11 Direct Interelectrode Capacitances: b
Grid No.1 to plate
Mechanical:
Operating Position.
Terminal Connections (See Dimensional Outline): BOTTOM VIEW
Pin 1-Cathode Pin 2-Grid No.2 Pin 3-Grid No.1 Pin 4-Cathode Pin 5-Heater Pin 6-Heater Pin 7-Grid No.2 Pin 8-Grid No.1 Pin 9-Cathode Pin 10-Grid No.2 Pin 11-Grid No.1 Terminal Contact Surface RING - Grid-No.2 Terminal Contact Surface Thermal:
Terminal Temperature (All terminals) 250 max. OC
Plate Core Temperature (See Dimensional Outline) 250 max. °C

Cooling, Conduction:

The plate-terminal (cylinder) must be thermally coupled to a constant temperature device (heat-sink—solid or liquid) to limit the plate terminal to the specified maximum value of 250° C. The grid No.2, grid No.1, cathode, and heater terminals may also require coupling to the heat sink to limit their respective terminal temperature to the specified maximum value of 250° C.

LINEAR RF POWER AMPLIFIER

Single-Sideband Suppressed-Carrier Service

Peak envelope conditions for a signal having a minimum peak-to-average power ratio of 2

Maximum CCS Ratings, Absolute-Maximum Values:

	IIt to soo No	
DC PLATE VOLTAGE	Up to 500 Mc 2200 max. 400 max100 max. 450e max. 100 max. 100f max. 8 max.	volts volts volts ma ma watts watts
respect to cathode Heater positive with	150 max.	volts
respect to cathode	150 max.	volts
Typical CCS Operation with "Two-Tone Modula	ation":	
	At 30 Mc	
DC Plate Voltage	700 250 -20 100 1420	volts volts volts ma ohms
Peak of envelope	205 150 16	ma ma
Peak of envelope	10 1h	ma ma ma
Output (Approx.)	0.3 95	watt %
Third order	30 35	db db
Peak of envelope	80 ^m 40 ^m	watts watts

Maximum Circuit Values:								
Grid-No.1-Circuit Resistance								
under any condition:								
With fixed bias			25000	max.	ohms			
With fixed bias (In Class-AB _I								
operation)			100000	max.	ohms			
With cathode bias			Not	recom	mended			
Grid-No.2-Circuit Impedance			10000		ohms			
Plate-Circuit Impedance			n					
DE DOWED ANDLIETED . ACAILL	ATOD	01	- A T-	1	L			
RF POWER AMPLIFIER & OSCILL		- Clas	s C le	iegrap	ny			
an	-	C FM T	-16-					
RF POWER AMPLIFIER			-	ny				
Maximum CCS Ratings, Absolute-M	aximum	Value	s:					
			Up to	soo Mc				
DC PLATE VOLTAGE					volts			
DC GRID-No.2 VOLTAGE		• •	2200	max.				
			400	max.	volts			
DC GRID-No.1 VOLTAGE			-100	max.	volts			
DC PLATE CURRENT			300	max.	ma			
DC GRID-No.1 CURRENT			100	max.	ma			
GRID-No.2 DISSIPATION			8 400 f	max.	watts			
		• •	100 f	max.	watts			
PEAK HEATER-CATHODE VOLTAGE:								
Heater negative with			450		٠.			
respect to cathode			150	max.	volts			
Heater positive with			450					
respect to cathode		• •	150	max.	volts			
Typical CCS Operation:								
In grid-drive circuit					.,			
at frequency of 5)	17	75	470	Mc			
DC Plate Voltage 500	700	500	700	700	volts			
DC Grid-No.2 Voltage 160	175	200	200	200	volts			
DC Grid-No.1 Voltage10	-10	-30	-30	-30	volts			
DC Plate Current 300	300	300	300	300	ma			
DC Grid-No.2 Current 25	25	30	20	10	ma			
DC Grid-No.1 Current 50	50	40	40	20	ma			
Driver Power Output								
(Approx.) P 1.2	1.2	3	3	5	watts			
Useful Power Output:			•					
Typical 85 ^m	110 ^m	70 m	105 m	85 m	watts			
For minimum useful-								
power output see								
Characteristics Range								
Values, Test No.	. 8	No	. 9	No.10				
Maximum Circuit Values:								
Grid-No.1-Circuit Resistance								
under any condition:								
With fixed bias			25000		ohms			
Grid-No.2-Circuit Impedance			10000	max.	ohms			
Plate-Circuit Impedance			n					

- Because the cathode is subjected to back bombardment as the frequency is increased with resultant increase in temperature, the heater voltage should, for optimum life, be reduced to a value such that at the heater voltage obtained at minimum supply voltage conditions (all other voltages constant) the tube performance just starts to show some degradation; e.g., at 470 Mc, heater volts = 12.5 (Approx.).
- Measured with special shield adapter.
- Mycalex Corporation of America, 125 Clifton Boulevard, Clifton, New Jersey.
- d For use at higher frequencies.
- The maximum rating for a signal having a minimum peak-to-average power ratio less than 2, such as is obtained in "Single-Tone" operation, is 300 ma. During short periods of circuit adjustment under "Single-Tone" conditions, the average plate current may be as high as 450 ma.
 - Maximum plate dissipation is limited by the maximum plate core temperature and the cooling system to maintain tube operation below the specified maximum plate core temperature. With simple low-cost cooling techniques, maximum plate dissipation may be only about 100 watts; with more sophisticated cooling techniques, maximum plate dissipation may be as high as 300 watts.
- 9 Obtained preferably from a separate, well-regulated source.
- h This value represents the approximate grid—No.1 current obtained due to initial electron velocities and contact—potential effects when grid No.1 is driven to zero volts at maximum signal.
- Driver power output represents circuit losses and is the actual power measured at input to grid-No.1 circuit. The actual power required depends on the operating frequency and the circuit used. The tube driving power is approximately zero watts.
- With maximum signal output used as a reference, and without the use of feedback to enhance linearity.
- The value of useful power is measured at load of output circuit.
- n The tube should see an effective plate supply impedance which limits the peak current through the tube under surge conditions to 15 amperes.
- P Driver power output includes circuit losses and is the actual power measured at the input to the grid circuit. It will vary depending upon the frequency of operation and the circuit used.

CHARACTERISTICS RANGE VALUES

Test	No.	Note	Min.	Max.	
1.	Heater Current	1	1.15	1.45	amp
2.	Direct Interelectrode				
	Capacitances:	2			
	Grid No.1 to plate		_	0.13	$\mu\mu$ f
	Grid No.1 to cathode .	-	14.3	17.7	$\mu\mu$ f
	Plate to cathode	_	0.0065	0.0155	$\mu\mu$ f
	Grid No.1 to grid No.2	_	19.8	24.2	$\mu\mu$ f
	Grid No.2 to plate	-	5.7	7.1	$\mu\mu$ f
	Grid No.2 to cathode .	_	2.6	3.6	$\mu\mu$ f
	Cathode to heater	_	2.5	4.1	$\mu\mu$ f
3.	Grid-No.1 Voltage	1,3	-8	-19	volts
4.	Reverse Grid-No.1				
	Current	1,3	_	-25	μ a
5.	Grid-No.2 Current	1,3	-7	+6	ma
6.	Peak Emission	1,4	13	-	peak amp
7.	Interelectrode Leakage				
	Resistance	5	1	_	megohm
8.	Useful Power Output	1,6	90	_	watts
9.	Useful Power Output	1,7	85	_	watts
10.	Useful Power Output	1,8	75	-	watts
11.	Cutoff Grid-No.1 Voltage	1,9	-	-44	volts

- Note 1: With 13.5 volts ac or dc on heater.
- Note 2: Measured with special shield adapter.
- Note 3: With dc plate voltage of 700 volts, dc grid-No.2 voltage of 250 volts, and dc grid-No.1 voltage adjusted to give a dc plate current of 185 ma.
- Note 4: For conditions with grid No.1, grid No.2, and plate tied together; and pulse voltage source connected between plate and cathode. Pulse duration is 2.5 microseconds and pulse repetition frequency is 60 pps. The voltage-pulse amplitude is 200 volts peak. After 1 minute at this value, the current-pulse amplitude will not be less than the value specified.
- Note 5: Under conditions with tube at 20° to 30° C for at least 30 minutes without any voltages applied to the tube. The minimum resistance between any two electrodes as measured with a 200-volt Megger-type ohmmeter having an internal impedance of 1 megohm, will be 1 megohm.
- Note 6: In a CW grid-driven, conduction-cooled amplifier circuit at 50 Mc and for conditions: dc plate voltage of 700 volts, grid-No.1 voltage of -10 volts, driver power output of 1.2 watts, and grid-No.2 voltage varied to obtain a plate current of 300 ma.
- Note 7: In a CW grid-driven, conduction-cooled amplifier circuit at 175 Mc and for conditions: dc plate voltage of 700 volts, grid-No.1 voltage of -30 volts, driver power output of 3 watts, and grid-No.2 voltage varied to obtain a plate current of 300 ma.
- Note 8: In a CW grid-driven, conduction-cooled amplifier circuit at 470 Mc and for conditions: dc plate voltage of 700 volts, grid-No.1 voltage of -30 volts, driver power output of 5 watts, and grid-No.2 voltage varied to obtain a plate current of 300 ma.
- Note 9: With dc plate voltage of 700 volts, dc grid-No.2 voltage of 250 volts, and dc grid-No.1 voltage varied to obtain a plate current of 5 ma.

COOLING CONSIDERATIONS

The conduction-cooling system consists, in general, of a constant temperature device (heat sink) and suitable heat-flow path (coupling device) between the heat sink and tube. Primary consideration of the system should be given to the design of a heat-flow path (coupling device) with high thermal conductivity.

Thermal conductivity q may be calculated from the equation:

$$K = \frac{W}{A \cdot \frac{(T_2 - T_1)}{L}} \tag{1}$$

where;

K = thermal conductivity of the material

W = power transfer in watts

A = area measured at right angles to the direction of the flow of heat in square inches

 T_1, T_2 = temperature in degrees Centigrade of planes or surfaces under consideration

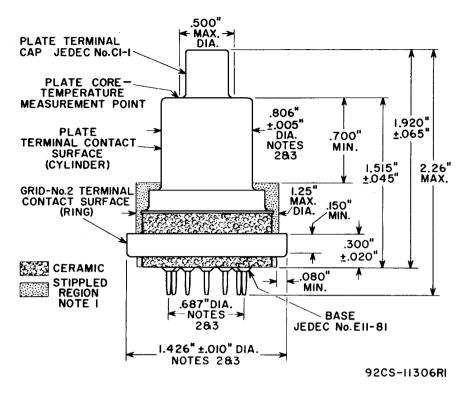
E = length of heat path in inches through coupling material to produce temperature gradient

Thermal conductivity is defined as the time rate of transfer of heat by conduction, through unit thickness, across unit area for unit difference of temperature. It is measured in watts per square inch for a thickness of one inch and a difference of temperature of 1°C.

For a given system Equation (I) must be integrated to consider changes in area (A) dependent on the coupling configuration and changes in thermal conductivity (K) dependent on various coupling materials and interfaces. Equation (I) may now be reduced to the following:

$$K_{S} = \frac{W_{P}}{T_{2} - T_{1}}$$
 (2)

where;

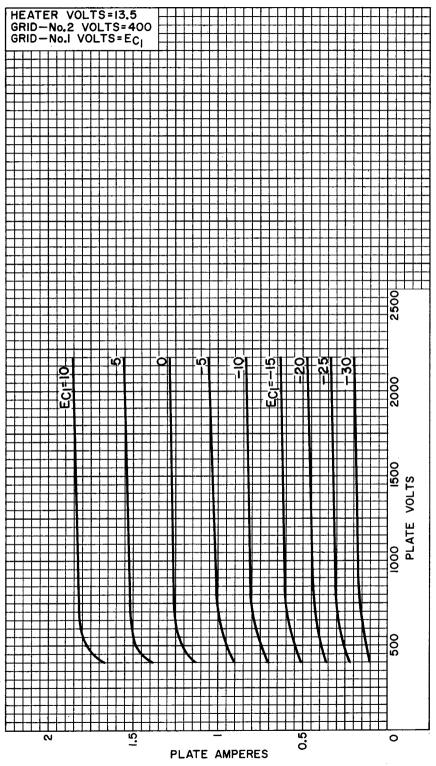

 K_S = thermal conductance of the system

W_P = maximum permissible plate dissipation in watts

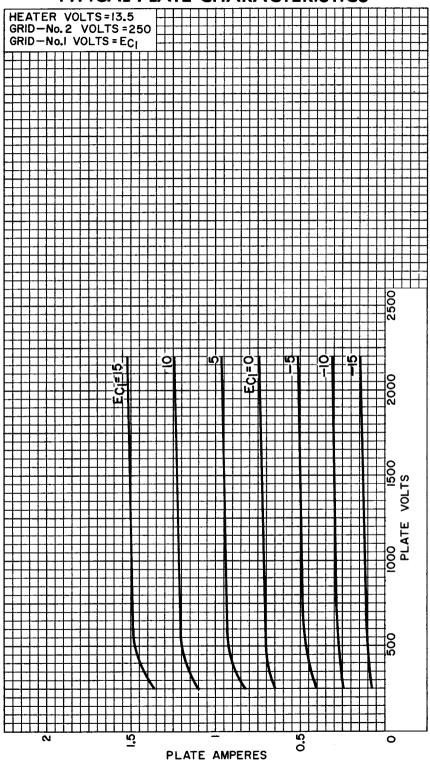
T₂ = temperature in degrees Centigrade at tube terminal

This value may never exceed the specified maximum rating for terminal temperature.

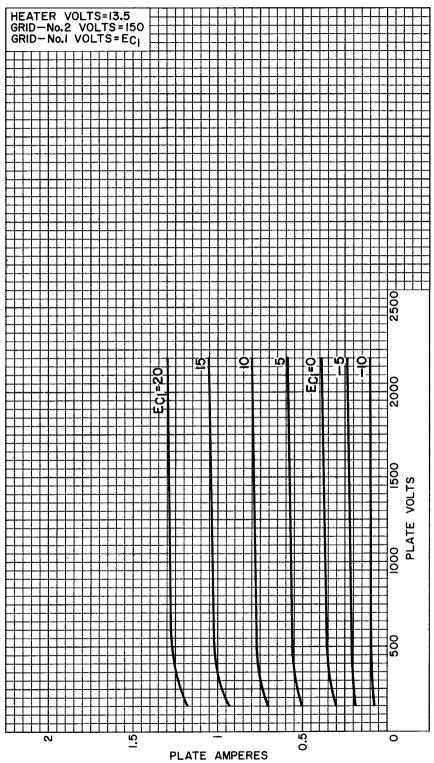
T₁ = temperature in degrees Centigrade of heat sink

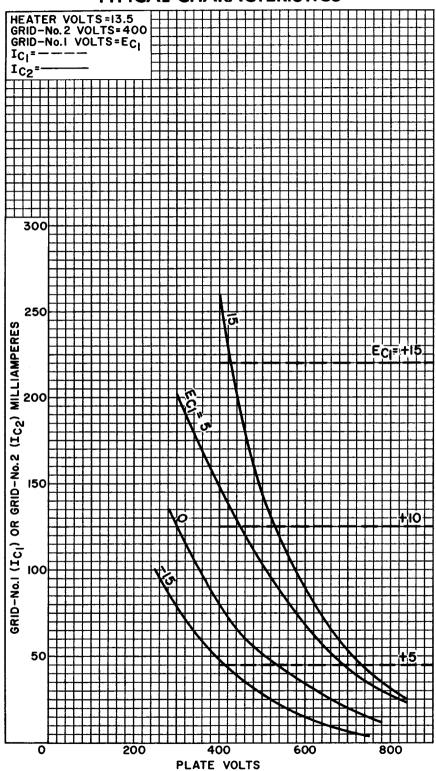


NOTE I: KEEP ALL STIPPLED REGIONS CLEAR. DO NOT ALLOW CONTACTS OR CIRCUIT COMPONENTS TO PROTRUDE INTO THESE ANNULAR VOLUMES.

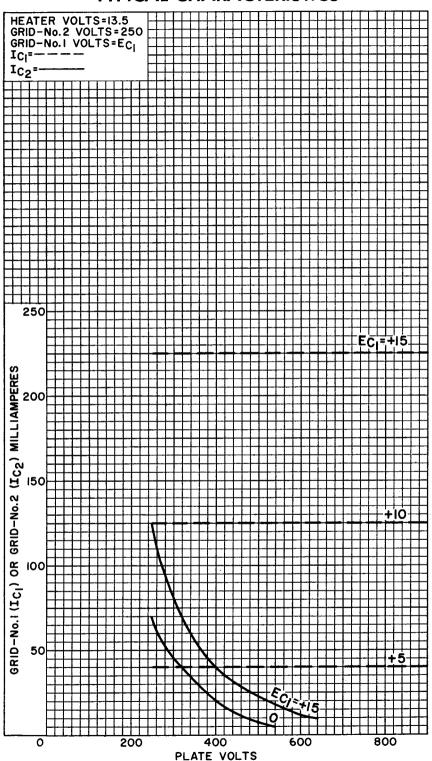

NOTE 2: THE DIAMETERS OF THE PLATE TERMINAL CONTACT SURFACE, GRID-No.2 TERMINAL CONTACT SURFACE, AND PIN CIRCLE TO BE CONCENTRIC WITHIN THE FOLLOWING VALUES OF MAXIMUM FULL INDICATOR READING:

NOTE 3: THE FULL INDICATOR READING IS THE MAXIMUM DEVI-ATION IN RADIAL POSITION OF A SURFACE WHEN THE TUBE IS COMPLETELY ROTATED ABOUT THE CENTER OF THE REFERENCE SUR-FACE. IT IS A MEASURE OF THE TOTAL EFFECT OF RUN-OUT AND ELLIPTICITY.

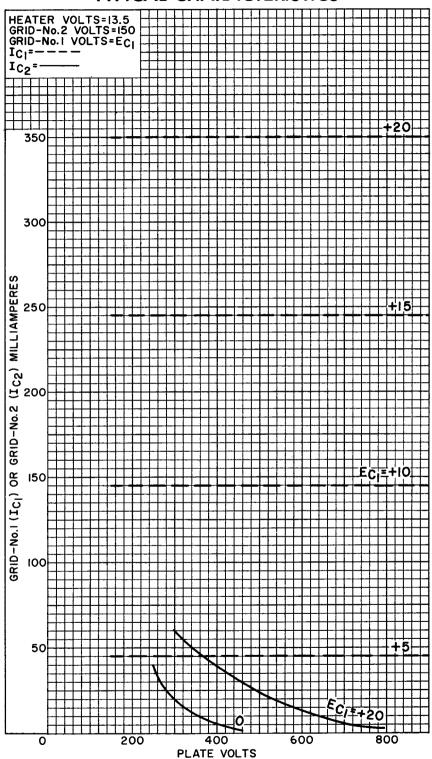

TYPICAL PLATE CHARACTERISTICS


TYPICAL PLATE CHARACTERISTICS

TYPICAL PLATE CHARACTERISTICS



TYPICAL CHARACTERISTICS



92CM-11293RI

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

